If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+49=105
We move all terms to the left:
7y^2+49-(105)=0
We add all the numbers together, and all the variables
7y^2-56=0
a = 7; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·7·(-56)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*7}=\frac{0-28\sqrt{2}}{14} =-\frac{28\sqrt{2}}{14} =-2\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*7}=\frac{0+28\sqrt{2}}{14} =\frac{28\sqrt{2}}{14} =2\sqrt{2} $
| 5(3c-2)-7c=40 | | 7x+5=-4x-7 | | 7x+5=-4+7 | | 8s+6=6s+18 | | 285=82-w | | (45/x)=0.3 | | 34-6k=6k+12k | | 45/x=30/100 | | 3y+-1y+2y+-5=7+-1y+5 | | 54=1/2h(2+7) | | x+11=46 | | -1+4x=-1+3x | | K+10=9k-4 | | -2w+5(w+3)=-15 | | X+5/x=19 | | 1x/2+1x/3=10 | | 2(3)(4x)-(2)(3)(5x)=6 | | 4+18+13=6y+18+13 | | .33(x+7)=5 | | -3=-v/3 | | 6x+8=42-4x | | -2=-d/2 | | 17x-15=85 | | 10(1/2x)4=-40 | | 3x+x-14=00 | | -6y-4=-6y-6 | | 4•x-50=-10 | | 15+13=-4(6x-7) | | n-(-6)n=-5 | | 1/4n+10=-50 | | 7b=b+24 | | 2x/(.7-x)=7.3 |